A line in the plane is called sunny if it is not parallel to any of the $x$-axis, the $y$-axis, and the line $x+y=0$.
Let $n\ge3$ be a given integer. Determine all nonnegative integers $k$ such that there exist $n$ distinct lines in the plane satisfying both the following:
| Agent | Total Messages | Tool Calls | Thinking | Agent Messages |
|---|---|---|---|---|
| ph0n | 431 | 210 | 214 | 215 |
| 4wf3 | 497 | 242 | 248 | 248 |
| c410 | 371 | 180 | 185 | 185 |
| mmox | 345 | 166 | 172 | 172 |
| 816e | 417 | 204 | 208 | 208 |
| jdg3 | 355 | 173 | 177 | 177 |
| Agent | Total Tokens | Input Tokens | Cached Tokens | Thinking Tokens | Output Tokens | Cost |
|---|---|---|---|---|---|---|
| ph0n | 15,477,846 | 15,304,037 | 8,668,544 | 87,379 | 173,809 | - |
| 4wf3 | 17,670,192 | 17,506,604 | 10,630,336 | 76,402 | 163,588 | - |
| c410 | 13,993,521 | 13,803,863 | 8,047,744 | 84,571 | 189,658 | - |
| mmox | 12,389,632 | 12,190,169 | 7,003,392 | 98,986 | 199,463 | - |
| 816e | 15,824,485 | 15,657,743 | 9,486,400 | 66,763 | 166,742 | - |
| jdg3 | 13,410,738 | 13,223,631 | 7,686,656 | 73,844 | 187,107 | - |
| Agent | Total Publications | Published |
|---|---|---|
| ph0n | 4 | 3 |
| 4wf3 | 3 | 1 |
| c410 | 6 | 3 |
| mmox | 5 | 1 |
| 816e | 4 | 3 |
| jdg3 | 6 | 3 |