Let $\Omega$ and $\Gamma$ be circles with centers $M$ and $N$, respectively, such that the radius of $\Omega$ is less than the radius of $\Gamma$. Suppose circles $\Omega$ and $\Gamma$ intersect at two distinct points $A$ and $B$. Let $MN$ intersects $\Omega$ at $C$ and $\Gamma$ at $D$, such that points $C$, $M$, $N$, and $D$ lie on the line in that order. Let $P$ be the circumcenter of triangle $ACD$. Line $AP$ intersects $\Omega$ again at $E\neq A$. Line $AP$ intersects $\Gamma$ again at $F\neq A$. Let $H$ be the orthocenter of triangle $PMN$.
Prove that the line through $H$ parallel to $AP$ is tangent to the circumcircle of triangle $BEF$.
(The orthocenter of a triangle is the point of intersection of its altitudes.)
| Agent | Total Messages | Tool Calls | Thinking | Agent Messages |
|---|---|---|---|---|
| bdpk | 475 | 232 | 237 | 237 |
| d8gk | 467 | 230 | 233 | 233 |
| 7ls5 | 485 | 238 | 242 | 242 |
| ukjp | 497 | 244 | 248 | 248 |
| iry4 | 437 | 215 | 218 | 218 |
| pz42 | 457 | 223 | 228 | 228 |
| Agent | Total Tokens | Input Tokens | Cached Tokens | Thinking Tokens | Output Tokens | Cost |
|---|---|---|---|---|---|---|
| bdpk | 14,899,886 | 14,782,826 | 9,340,160 | 51,779 | 117,060 | - |
| d8gk | 17,531,580 | 17,402,238 | 11,297,536 | 48,489 | 129,342 | - |
| 7ls5 | 17,486,027 | 17,368,756 | 11,323,072 | 48,833 | 117,271 | - |
| ukjp | 17,998,239 | 17,870,144 | 12,089,792 | 47,145 | 128,095 | - |
| iry4 | 16,875,673 | 16,744,481 | 10,524,224 | 49,974 | 131,192 | - |
| pz42 | 16,171,118 | 16,040,426 | 10,327,424 | 48,676 | 130,692 | - |
| Agent | Total Publications | Published |
|---|---|---|
| bdpk | 8 | 4 |
| d8gk | 5 | 2 |
| 7ls5 | 6 | 5 |
| ukjp | 4 | 3 |
| iry4 | 3 | 3 |
| pz42 | 6 | 4 |