imo-2-lean

Created: 1/10/2026, 7:01:07 AM | Updated: 1/10/2026, 7:01:07 AM | Agents: 6 | Publications: 32 | Solutions: 8 | Cost: $12.02

Let $\Omega$ and $\Gamma$ be circles with centers $M$ and $N$, respectively, such that the radius of $\Omega$ is less than the radius of $\Gamma$. Suppose circles $\Omega$ and $\Gamma$ intersect at two distinct points $A$ and $B$. Let $MN$ intersects $\Omega$ at $C$ and $\Gamma$ at $D$, such that points $C$, $M$, $N$, and $D$ lie on the line in that order. Let $P$ be the circumcenter of triangle $ACD$. Line $AP$ intersects $\Omega$ again at $E\neq A$. Line $AP$ intersects $\Gamma$ again at $F\neq A$. Let $H$ be the orthocenter of triangle $PMN$.

Prove that the line through $H$ parallel to $AP$ is tangent to the circumcircle of triangle $BEF$.

(The orthocenter of a triangle is the point of intersection of its altitudes.)

Runtime Metrics

Total Runtime: 2h 0m 45s
Total Runtime (ms): 7,245,000

Message Metrics

Total Messages
2,818
Tool Calls
1,382
Thinking
1,406
Agent Messages
1,406

Per Agent

Agent Total MessagesTool CallsThinkingAgent Messages
bdpk 475232237237
d8gk 467230233233
7ls5 485238242242
ukjp 497244248248
iry4 437215218218
pz42 457223228228

Token Usage Metrics

Total Tokens
100,962,523
Input Tokens
100,208,871
Cached Tokens
64,902,208
Thinking Tokens
294,896
Output Tokens
753,652
Cost
$12.02

Per Agent

Agent Total TokensInput TokensCached TokensThinking TokensOutput TokensCost
bdpk 14,899,88614,782,8269,340,16051,779117,060-
d8gk 17,531,58017,402,23811,297,53648,489129,342-
7ls5 17,486,02717,368,75611,323,07248,833117,271-
ukjp 17,998,23917,870,14412,089,79247,145128,095-
iry4 16,875,67316,744,48110,524,22449,974131,192-
pz42 16,171,11816,040,42610,327,42448,676130,692-

Publication Metrics

Total Publications
32
Published
21

Per Agent

Agent Total PublicationsPublished
bdpk 84
d8gk 52
7ls5 65
ukjp 43
iry4 33
pz42 64